

Validation of the Spectral Radiances and Forward Model for TES

Tony Clough, Mark Shephard, Vivienne Payne, Karen Cady- Pereira,

Atmospheric & Environmental Research, Inc.

and

Helen Worden

Jet Propulsion Laboratory

AURA Validation Meeting 10 September 2006

For Passive Remote Sensing-Retrieval of an Accurate Temperature Profile is Critical

Focus of this presentation

Uniformly mixed gas: Carbon Dioxide

Improvement in Forward Model: P - R Line Mixing for CO₂

Acknowledgments

University of Wisconsin

Hank Revercomb, Bob Knuteson and Dave Tobin

JPL

TES Algorithm Development Team

Remote Sensing

Measurements

- High Resolution Spectral Radiances
- Upwelling/Downwelling

Forward Model (lblrtm)

- Atmospheric State
 Layering, Pressure, Temperature and Column Amounts
- Layer Optical Depths
 Line Parameters (Line Coupling)

Line Shape

Continuum

- Radiative Transfer
- Instrument Function

Model/Measurement Comparisons

- Truth?
- Temperature / Clear Sky

Instruments

• AERI Atmospheric Emittance Radiometric Interferometer

U. of Wisconsin
 Interferometer

Downwelling Radiance
 ARM/Surface
 Resolution: 0.5 cm⁻¹

(S)HIS (Scanning) High-resolution Interferometer Sounder

U. of Wisconsin
 Interferometer

Upwelling Radiance ER-2/WB-57 Resolution: 0.5 cm⁻¹

TES Tropospheric Emission Spectrometer

- JPL Interferometer

Upwelling Radiance
 AURA
 Resolution: 0.06 cm⁻¹

AIRS Atmospheric InfraRed Sounder

-JPL/NASA Grating Array

-Upwelling Radiance AQUA Resolution: 0.5 - 2 cm⁻¹

Spectral Radiance Measurements

- The retrieval of atmospheric parameters with InfraRed Remote Sensing is a Poorly Posed Problem
- High Accuracy in the Forward Model and the Measured Radiances is Essential
- 'Truth' at the Level Required is not readily available
 - sonde accuracies; spatial and temporal sampling
 - laboratory measurements

What is 'Truth'?

Spectral Residuals are Key!

- Consistency between bands
 - AIRS v_2 and v_3 bands to investigate consistency for CO₂
- Consistency between species
 - TES: temperature from O₃ and H₂O consistent with CO₂; N₂O
- Consistency between instruments

- SHIS - AERI

- AIRS - ACE

- TES - MIPAS

AERI Downwelling at the Surface ARM SGP Moist

Effect of New Calibration on AIRS - TES Comparisons

Run 2147 - 51 homogeneous nscenes

SHIS Analysis from AFWEX Experiment Oklahoma SGP - sonde

M. W. Shephard and S. A. Clough, (AER) 13 Jun 06 13:34

Impact on Temperature Profile Reference: Radiosonde

AIRS Analysis ARM Tropical Western Pacific site - sonde

CO2 Temperature Retrievals

Summary

- Forward Model for Temperature Retrievals significantly improved
 - improvements discussed here: CO_2 ; v_2 ; 600 800 cm⁻¹
 - P-R line coupling is a key element
 - duration of collision effect and continuum: under study
 - current effort: CO_2 ; v_3 ; 2200 2400 cm⁻¹
 - 'task force': Strow, Tobin, Shephard, Revercomb and Clough
- Focus of our group is shifting to the validation of Water Vapor, Ozone and Clouds
- Issues with water vapor continuum have become remarkably muted
- Updated Code and Line Parameters: to be made public
- Spectral Residuals should play a stronger role in the validation process

http://rtweb.aer.com/ LBLRTM_v10.3: Analytic Jacobian

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture. Back-up slides to follow......

SHIS Analysis from AURA Validation Experiment Gulf of Mexico - no sonde

M. W. Shephard and S. A. Clough, (AER) 12 Jun 06 18:57

Impact on Temperature Profile Reference: GMAO

General Remarks on $CO_2 V_2$ and V_3

- P-R line mixing and modest changes in line parameters have been implemented in LBLRTM_v10.1 and tes_v_1.3 line data
- The CO $_2$ v_2 region shows significantly improved consistency between the CO $_2$ v_2 and v_3 spectral regions, and thus the retrieved temperature profiles from the two regions
- However, the consistency between v_2 and v_3 is still not satisfactoryYet!
- Curently working on the $CO_2 v_3$ spectral region:
 - Implement P/R line coupling in the CO₂ v₃ spectral region
 - Further investigate the duration of collision effects and continuum by taking into consideration both CO_2 v_2 and v_3

'Truth' isn't ubiquitous- Yet!

• Spectral Residuals are Key!

- MIPAS
- ACE

Single TES ARM TWP Residual Comparison

Method

- After T_{ATM}, H₂O, O₃ retrieval step
- Removed data with:
 - CLOUD optical depth > 0.5
 - radiance residual mean > 0.3
 - radiance residual rms > 2.0
 - Latitudes > 30S and 30N
- Mean Residuals (observed fit) for TES global survey 2147
- Mean of 210 spectra

AIRS / SHIS Comparisons

A detailed comparison should account for:

- instrumental noise and scene variations
- Different observation altitudes: AIRS: 705km SHIS: ~20km
- " view angles
- " spatial footprints
- " spectral response

- ~ 15km at nadir ~ 2km at nadir
- $\Delta v = v/1200$ $\Delta v = \sim 0.5 \text{ cm}^{-1}$

SHIS and AIRS SRFs

MODIS 12 micron Brightness Temperatures

8 AIRS FOVs used in the following comparisons (near nadir)
448 SHIS FOVs

Comparison Approach

Common Spectral Basis:

- AIRS: convolve with SHIS Instrument Function (IF)
- SHIS: convolve with AIRS Instrument Function

Common Spatial Basis:

- Assume a specification of atmospheric state (sonde, ecmwf)
- LBL_AIRS
 - LBLRTM spectral radiance for each FOV associated with AIRS
 - Convolve with AIRS IF, then SHIS IF
 - Average over common spatial domain
- LBL_SHIS
 - LBLRTM spectral radiance for each FOV associated with SHIS
 - Convolve with SHIS IF, then AIRS IF
 - Average over common spatial domain

Comparison:

```
(AIRS - LBL_AIRS)
- (SHIS - LBL_SHIS)

{AIRS - SHIS} - [LBL_AIRS - LBL_SHIS]
small
```

AIRS / SHIS Brightness Temperature Comparison Excluding channels strongly affected by atmosphere above ER2

Aura Validation Experiment: Nov. 7, 2004 : Gulf of Mexico

AVE Observations to Investigate Line-by-line Calculations

Brightness Temperature (K) @ 1105 cm ⁻¹

SHIS scans - averaged nine ~2 km circles

TES nadir scan - average of the sixteen 0.5 x 5km rectangular pixels from overpass

SHIS: ~ 2 km

cm⁻¹

Spectral resolution: 0.48

TES Underflight

Altitude of 18 km

TES: 8 x 5 km

cm⁻¹ Spectral resolution: 0.06

Nadir
19:25 UTC

TES - SHIS Radiance Comparison

- TES Convolved to SHIS ILS
- {TES LBLRTM(TES Geometry)} {SHIS LBLRTM(SHIS Geometry)}

Aura Validation Experiment (AVE) 11/07/04 2298_0003_10

Role of Spectrscopy

- Remote Sensing (infrared)
 - High Resolution Spectral Radiances
 - Upwelling/Downwelling
- Specification of the Atmosphere (microwave)
 - Atmospheric Water Vapor Column
 - Water Vapor Continuum
- Atmospheric Fluxes and Cooling Rates

Line Parameters

- HITRAN: reference source for 'AER' Line Parameters
- Substitutions are only made for very specific reasons and only with extensive validation
- aer_v_1.0 (0 -122,656 cm-1)
- tes_v_1.3 (500 3500 cm-1)

- 1. Water Vapor
 - HITRAN 2000 + Update 1.1 (Toth et al.)
- 2. Carbon Dioxide
 - HITRAN 2000
 - Line Coupling (Hartmann et al.)
- 3. Ozone
 - MIPAS (Wagner at al.; Flaud et al.)

Continuum: MT_CKD_1.3

Water Vapor

- Self / Foreign
- Single Line Shape for each

Carbon Dioxide

- v₂ Region Scaled based on this study
- Continuing Research Focus

Nitrogen: Collision Induced

- 2330 cm-1 Region
- Lafferty et al., 1996

Oxygen: Collision Induced

- 1600 cm-1 Region
- Thibault et al., 1996

Line Coupling

Lorentz

$$k_{i}(v) = \frac{1}{\pi} \frac{S_{i}}{(v - v_{i})^{2} + \alpha_{i}^{2}} \left[1 + y_{i}(v - v_{i})\right]$$

 y_i : line coupling coefficient

Line Coupling Parameters for the 5 < 2 Band

Effect of P-R Line Coupling on S-HIS Residuals

(Hartmann et al. Parameters)

Duration of Collision Effects

Lorentz

$$k_i(v) = \frac{1}{\pi} \frac{S_i}{\left(v - v_i\right)^2 + \alpha_i^2} \left[\chi(v - v_i)\right]$$

 χ_i : duration of collision

CO₂ Line Shape

Chi function: Multiplies Lorentz function to account for duration of collision effects.

Continuum: Line contributions 25 cm⁻¹ beyond line center

SHIS AVE Retrieval Results

SHIS Analysis from AURA Validation Experiment Persistent Spectral Residuals

M. W. Shephard and S. A. Clough, (AER) 12 Jun 06 18:57

Impact on Temperature Profile Reference: Radiosonde

"comparison 0" 8 AIRS FOVs, 448 SHIS FOVs, PC filtering

Detail View Before Spectroscopy

Further reduce residuals in the CO2 v2 spectral region

Averaging Kernels for S-HIS

SHIS AVE Temperature Retrieval Results

AIRS: new spectroscopy

Atmosphere: sonde/adjusted ecmwf

Reduction of Residuals in v_2 Region

Simultaneous Retrieval of Temperature and Line Parameters

- For each Vibration-Rotation Band $(8 \rightarrow 3)$
 - Line Strength (3 parameters)
 - Line Width (2 parameters)
- Global
 - P R Line Coupling (Hartmann) (scaling)
 - Q Line Coupling (Hartmann) (scaling)
 - Halfwidth Temperature Dependence
 - CO₂ Continuum (scaling)

Averaging Kernels

LBLRTM Validation : TES CO₂ v₂ Filter

TES Obs.

TES - LBLRTM

TES(SHIS ILS) - LBLRTM

SHIS - LBLRTM

